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ABSTRACT

In a recent paper, Satyanarayana and Prabhaker have presented
a new topological formula for evaluating exact reliability of
terminal-pair directed networks. Terms in the formula are
agssociated in a one~to-one fashion with certain acyclic sub-
graphs of the network, cyclic subgraphs being of no importance.
In their paper, however, the proof that cyclic subgraphs may
be ignored seems to be incomplete. We consider an alternate
proof of this fact.




A THEOREM CONCERNING CYCLIC DIRECTED GRAPHS
WITH APPLICATIONS TO NETWORK RELIABILITY

by

Randall R. Willie

In a recent incisive and original paper, Satyanarayana and
Prabhaker [1] have suggested a new and efficient method for calculating
exact system reliability for two terminal networks. The method applies
to a directed graph G with a single source vertex s and a sink vertex
t and with distinct initial and terminal vertices for each edge. Any
edge ®w may be working or failed, with probabilities P, and 1 - P, »
and the system is assumed to be working if and only if edges which have
not failed constitute at least one path from s to t . By path, we
mean a simple path; that is, a chain of edges directed from s to ¢t
that involves no cycle; in the reliability literature such a path is
usually called a minimal path. (For simplicity, let us assume graph
vertices are not subject to failure, though the concepts stated here
apply equally well to graphs where vertices also are "imperfect."

In this case the system would be considered working if and only if there
were at least one simple path from s to t all of whose edges
and vertices were working.)

A central point of Reference [1] is that if the inclusion-exclusion
formula is utilized to determine the probability of all edges working in
at least one s - t path, terms in the formula may be associated with
particular subgraphs of G . More specifically, a term is the probability
that all edges are working in some set of paths, and these edges determine
a subgraph of G . Other terms may refer to the same group of edges and
hence to the same subgraph. The idea is to collect terms common to each

subgraph and express the probability of the system working as

P




(1) z dHPr {n} ,

where the sum ranges over all subgraphs H having edge sets that can

be expressed as a union of s - t paths of G . Pr {H} is simply the
probability that all edges of H are working. The coefficient dH is
an integer, which is easily shown to be the difference between the number
of ways of representing the edge set of H as the union of an odd number
of s -t paths of G , and the number of ways of representing this set
as a union of an even number of paths.

The ingenuity of the approach is due mainly to the fact that the
coefficients dH are either +1 , -1 , or 0 . Satyanarayana and Prabhaker
show that dH is 41 or -1 for H an acyclic subgraph and give an
algorithm for finding each of these subgraphs and its dH value. They
also offer a proof that dH =0 for H a cyclic subgraph, so cyclic
subgraphs may be ignored.

The proof that dH = 0 for the cyclic subgraphs seems to involve
some technical points that require further clarification. In the present
discussion, we establish this fact by a somewhat different argumént, an
argument that will hopefully be of some interest to the reader in its
own right.

Most of the terminology used here is the same as that of Reference [1].
The subgraphs of G that are of interest are p-graphs; a p-graph is a
directed graph with source s and sink t in which every edge is in
at least one s - t path. Given a set P of paths with initial vertex
s and terminal vertex t , let Gr (P) be the graph consisting precisely
of the vertices and edges of paths in P . Gr (P) is then a p-graph, and

the set P 1is then called a formation cf Gr (P) . P 4is an odd formation




of Gr (P) if the set P contains an odd number of paths and an even
formation if P contains an even number of paths.

If H is a p-graph, then dH = 0 in formula (1) when the number of
odd formations of H is equal to the number of even formations. Our
argument that these numbers are equal for a cyclic p-graph involves two
lemmas and a theorem. Lemma 2 and the theorem give the main ideas;

Lemma 1 provides a technical fact used in proving Lemma 2. A number of

examples are included to illustrate the various concepts.

Lemma 1:

Let G be a directed graph and sz be the set of all paths from
vertex w to vertex z in G . If E 1is the set of edges common to
every path in sz and if sz contains at least two paths, then there

are at least two paths in sz whose only common edges are those in E .

Examples:
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FIGURE 1

In Figure 1 (a), E =@ and paths {ab} and {cd} are edge disjoint.
In Figure 1 (b), E = {b} and paths {abc} and {dbc} have only edge

b in common.




Proof:

If sz has at least two paths, it is not difficult to see that
no path in sz can consist only of edges in E . Now consider the
graph Gr (sz) as a flow network with source w and sink 2z . Let all
edges in the set E have flow capacity 2 and all other edges of Gr (sz)
have capacity 1. Every w - z cut for the network has capacity at least
2, since no edges other than those in E are common to all paths.
However, removal from Gr (sz) of any edge in E interrupts all paths
from w to z , so the minimal w - z cut has capacity 2. Thus, there
exists an integer max flow having value 2. (See Reference {2].) No path
in sz consists only of edges in E , so this flow may be decomposed
into two flows, each having value 1 along a distinct path in sz -
Because edges of these paths which are not in E have capacity 1,

these two paths are edge disjoint except for edges in E .||

Given a cyclic p-graph G and a simple cycle C in G , let MC
be a minimal set of paths in G , such that the p-subgraph Gr (MC) of
G contains all edges of C . Let us call MC a minimal cover for C .
Evidently, there may be more than one minimal cover for C , so let

{Mg s &1, sauy k} be the family of all minimal covers for C . By

C

the minimality requirement, it is clear that Mi ¢ M.1

for i #j




Example:

FIGURE 2

The cycle C = {bdfe} has but one minimal cover, M = {{abdfh},{gfebc}} .
Note that paths {abc} and {gfh} each contain an edge of the cycle

but are not in MC A

Lemma 2:

Let G be a cyclic p-graph. Then G contains a simple cycle C and
an s - t path PC such that PC is not in any minimal cover for C .
(The statement of the lemma is trivial when there is a path in G which
contains no edge of some cycle. However, as the previous example illus-

trates, for some cyclic p-graphs, every path might intersect every cycle.)

Proof:

We might as well assume every s - t path of G has an edge in
common with every cycle of G . Suppose P is an s - t path and let
w be the first vertex along P which is contained in some (simple)
cycle, say C' , and let w be the edge of C' entering node w . Note
that w # s , since otherwise edge w enters the source, which is not
valid for G a p-graph. Thus there is a subpath Psw of P directed
from vertex s to vertex w . The p-graph property leads us to conclude
also that w # t , so the set Pwt of all subpaths from vertex w to

the sink t 1s not empty. But no path in Pwt can involve a vertex of

I RN st b
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the path Psw other than w , since otherwise w would not then be the
first cycle vertex in the original path P . Each combination of Psw with a
subpath in Pwt is thus a simple s - t path. Figure 3 roughly illus-

trates the situation.

FIGURE 3

Under the initial assumption that every s - t path of G has an
edge in common with every cycle of G , it turns out that Pwt must
contain at least two paths. The validity of the lemma does not depend
on this fact, but our proof may be simplified by ignoring the case when
Pwt contains a single path. That Pwt contains at least two paths is
not difficult to show, though we do not show it here.

Let E be the set of edges common to every path in Pwt . By
Lemma 1 above, there are at least two paths P;t and P;é whose only
common edges are those in E . Since we have assumed that every s - t
path in G contains an edge of the cycle C' , every path in Pwt must
pass through a vertex of C' . Let x be the last vertex along C' from

vertex w , such that x 1is a vertex along path P;t or P;é . Without

loss of generality, suppose path P;t passes through vertex x .




Consider the cycle C , formed from cycle C' by replacing tle cycle
path from vertex w to vertex x in C' with the subpath of P&t from
w to x . The cycle C passes through each of its vertices but once,
so C 1is, in fact, a simple cycle. (C could be the same as C'.)

For convenience (or maybe inccuvenience), Figure 4 attempts to illustrate

the situation.

FIGURE 4

c

Finally, let P~ = PswP;£ , the s - t path formed by joining subpaths

Psw and Péé at vertex w . We maintain that PC is not in any minimal

cover Mg for cycle C . To see this, let Mg be any minimal cover
of C and suppose P is a path in Mg that contains edge o . If

v 1is the initial vertex of w , p¥ may be expressed as Psvawt » where

Psv is some path from s to v and Pwt € Pwt . Now note that the set

of cycle C edges in P&é is a subset of the set E of edges common to

all paths in Pwt el thus contains at least the edges of cycle C

wt
in P&E . Hence, P® cannot be in Mg , since P" contains at least
one more edge of C than PC (namely, w). Since MS was an arbitrary

cover of C , the lemma follows.||




To further clarify the construction of Lemma 2, let us consider the

following example:,

' ‘ FIGURE 5

Take Psw to consist of edge a , and {ebdf} to be the cycle C' .

The edge entering vertex w is then w = e . The set of paths Pwt

¢ is {{bc},{bdfh},{bifh}} . We can let PRI = {bc} and Pi, be either
{bdfh} or {bifh} . Suppose Pv'vt = {bifh} . In this case, vertex x
is the initial vertex of edge w , i.e., x = v 1in the vertex labeling
’ of the proof. The new cycle C will then be {ebif} . There is only

a single minimal cover of C , namely, M€ = {{abifh},{gfebc}} . The path

(¥

P° = P P'' = {abc} contains only the cycle C edge b ; whereas,

SW wt

P’ - {gfebc} contains not only cycle edge b , but also edge e .

Let PG be the family of all formations of a p-graph G and let

P beany s -t path in G . We partition the formations of ]PG
into families R(P) and {DH(P) | # a proper p-subgraph of G} as
i follows: A particular formation P ¢ PG is assigned to R(P) if either

(1) P does not contain path P , or (2) P contains path P but

v

P - {P} is also a formation of G . If P cannot be assigned to R(P)

B TP E———— - — P .




then H = Gr (P - {P}) 4s a proper subgraph of G and P is assigned to
DH(P) . Note that the number of odd formations in R(P) equals the
number of even formations. As a rule, most of the families

{DH(P)I H a proper p-subgraph of G} will be empty. In some cases,
R(P) may be empty.

If D,(P) is nonempty, let B {P-{P}|P ¢ D, (P)} . P,
consists of all formations of the p-graph H , since if Q is any for-
mation of H , Q U {P} must be a formation of G ; hence, Q U {P} ¢ DH(P)
and Q ¢ PB .
As an example of this partition, consider the graph of Figure 6.

The paths are:

P = (ag) p% = {bdfh}
p? « {afh) P = {cedg}
P3 = {bdg} ?% « (cn} .

The set lPG of formations of G is

T ————




P o= (2230} P = (plp%%p’)

P2 = (plp?pp’) P® = (ple3p%p’)

P> = (plp%p%} P’ = (p2p3p%p’)

A {P2P4P5} P8 - {PlP2P3P4P5 }

P = (p%p3p7p%) P13 = (plp2p%pop0)
P10 o (plp%p3p%p6) P4 = (plpipépop®)
Pl < (plppp®) P13 = (p2p3p4p%e6)
P12 = (pZp%p3p0) P16 = (plp%p3pépop6; .

Let us choose P3 and partition according to this path:

(P3,P",P5,P11,P12,P13l

P6,P7,P8,P1“,P15,P16s

Rr(P3

.

) =
Note the first 8 formations in R(P3) do not contain P3 , but the

last 8 do. Finally, the only proper p-subgraph H for which DH(P3)

is nonempty is that of Figure 7; for this subgraph, DH(Ps) =
' ot Ly O

e A o e e e —————— . A . | 1 et .l
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Theoren:

Let G be a cyclic p-graph. The number of odd formations of G

is equal to the number of even formations.

Proof:

We will use induction on the number of paths of G .
It is easy to verify that there are no cyclic p-graphs having less

than 4 paths, so let G have n = 4 paths. By Lemma 2, G has a cycle

c

C and a path P~ that is contained in no minimal cover Mg for that

cycle. Partition the family ]PG of formations as indicated above,

using the path PC . We maintain that DH(PC) is empty for every

p-subgraph H of G . To see this, note that if P ¢ DH(PC) , there
is at least ome minimal cover Mg in P - {Pc} , since Pc is in

C :
no Mi . But then H =¢Gr (P - {P°}) 1s c¢yclic, which is not possible

because H has 3 or less paths. Thus P, = R(Pc) ,» and since the

G
number of even formations of G in R(PC) is equal to the number of

odd formations, the theorem is true when G has &4 paths.
Now suppose the theorem is true for all cyclic p-graphs having m

paths, 4 <m<n-1. Let G be a cyclic p-graph having n paths.

c

By Lemma 2 again, G has a cycle C and a path P~ that is in no minimal

cover for C . Partitioning the family P, of all formations of G ,

G
we get families R(Pc) and {DH(PC) | H a proper p-subgraph of G} .

If DH(PC) is empty for all p-subgraphs H of G , then P, = R(PC)

G
as above, and the number of even formations of G equals the number of
odd formations. Hen:e, suppose Dn(Pc) is nonempty for some H . Since
Pc is contained in no Mg ,» H must be cyclic and H contains n - 1

or less paths. By the induction assumption, the family Pn of all

PP
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formations of H has the same number of even as odd formations. Each
formation of G 1in 'Dh(Pc) can be produced by appending PC to one
of the formations in Pll . Hence, for every nonempty family DH(PC) =
the number of even formations in IDH(PC) equals the number of odd
formations. Thus, each family in the partition of 'PG is either empty
or contains the same number of even as odd formations, and the theorem

follows. ||
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